Project Title	Funding	Strategic Plan Objective	Institution	
o study the relationship between decreased hepatocyte prowth factor (HGF) and glutamate excitotoxicity in utistic children	\$7,228	Q2.Other	Health Research Institute/Pfeiffer Treatment Center	
The Study of Toddlers with Autism and Regression (STAR) Protocol – Screening for treatable disorders and biomarkers of inflammation and immune activation in the blasma and CNS	\$158,461	Q2.S.A	Surrey Place Centre, Toronto	
The pathogenesis of autism: Maternal antibody exposure n the fetal brain	\$93,500	Q2.S.A	The Feinstein Institute for Medical Research	
The mechanism of the maternal infection risk factor for autism	\$0	Q2.S.A	California Institute of Technology	
Systematic characterization of the immune response to gluten and casein in autism spectrum disorders	\$0	Q2.S.A	Weill Cornell Medical College	
Role of microglial activation in the serotonergic and neuroimmune disturbances underlying autism	\$0	Q2.S.A	Hamamatsu University School of Medicine	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	State University of New York at Potsdam	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	Arkansas Children's Hospital Research Institute	
Redox abnormalities as a vulnerability phenotype for lutism and related alterations in CNS development	\$0	Q2.S.A	University of Rochester	
Prostaglandins and cerebellum development	\$371,250	Q2.S.A	University of Maryland, Baltimore	
Primate models of autism	\$75,629	Q2.S.A	University of California, Davis	
eleuroprotective effects of oxytocin receptor signaling in the enteric nervous system	\$25,000	Q2.Other	Columbia University	
Neuroimmunologic investigations of autism spectrum disorders (ASD)	\$264,726	Q2.S.F	National Institutes of Health	
Mechanisms of mitochondrial dysfunction in autism	\$0	Q2.S.A	Georgia State University	
Maternal infection and autism: Impact of placental sufficiency and maternal inflammatory responses on etal brain development	\$108,375	Q2.S.A	Stanford University	
nvestigation of IL-9, IL-33 and TSLP in serum of autistic shildren	\$8,650	Q2.S.A	Tufts University School of Medicine	
nfluence of the maternal immune response on the levelopment of autism	\$0	Q2.S.A	University of Medicine & Dentistry of New Jersey	
nfluence of maternal cytokines during pregnancy on iffector and regulatory T helper cells as etiological actors in autism	\$93,500	Q2.S.A	University of Medicine & Dentistry of New Jersey	
Hyperthermia and the amelioration of autism symptoms	\$0	Q2.S.A	Montefiore Medical Center	
How does IL-6 mediate the development of autism- elated behaviors?	\$0	Q2.S.A	California Institute of Technology	
Glutamate signaling in children with autism spectrum disorder	\$57,840	Q2.Other	University of California, Davis	
SABA(A) and prenatal immune events leading to autism	\$62,500	Q2.S.A	Stanford University	

Project Title	Funding	Strategic Plan Objective	Institution
Exploring metabolic dysfunction in the brains of people with autism	\$59,856	Q2.S.A	George Washington University
CNS toxicity of ambient air pollution: Postnatal exposure to ultrafine particles	\$229,433	Q2.S.A	University of Rochester
Autoimmunity against novel antigens in neuropsychiatric dysfunction	\$320,000	Q2.S.A	University of Pennsylvania
A role for immune molecules in cortical connectivity: Potential implications for autism	\$0	Q2.S.A	University of California, Davis
A primate model of gut, immune, and CNS response to childhood vaccines	\$156,634	Q2.S.A	University of Washington
A non-human primate autism model based on maternal infection	\$200,000	Q2.S.A	California Institute of Technology
A non-human primate autism model based on maternal immune activation	\$75,629	Q2.S.A	University of California, Davis